WG 2: Modelling of hazards

ton vrouwenvelder/bernt leira

the netherlands/norway

Model = physics + statistics

Earthquake Landslide Tornado Avalanche Rock fall High groundwater Flood

hazards

Internal explosion

External explosion

Internal fire

External fire

Impact by vehicle etc

Mining subsidence

Environmental attack

Vandalism Demonstrations Terrorist attack Design error Material error Construction error User error

Lack of maintenance

Modelling of accidental actions (natural / man made)

- \Box Triggering event *H* (place **x**, time *t*)
- □ Magnitude possibly some other parameters.
- Physical interactions (environment, structure S)
- Damage
- Consequences

Components for the extreme event modelling (S=Structure, H=Hazard event)

Impact scenario model

variable	designation	type	mean	stand dev
n	number of lorries/day	deterministic	5000	-
Т	reference time	deterministic	100 years	-
λ	accident rate	deterministic	10 ⁻¹⁰ m ⁻¹	-
b	width of a vehicle	deterministic	2.50 m	-
α	angle of collision course	rayleigh	10°	10 [°]
v	vehicle velocity	lognormal	80 km/hr	10 km/hr
а	deceleration	lognormal	4 m²/s	1.3 m/s ²
m	vehicle mass	normal	20 ton	12 ton
k	vehicle stiffness	deterministic	300 kN/m	-

Table 4.2.1: Data for probabilistic collision force calculation

Life time exceedence probability: 10⁻³

INTERNAL NATURAL GAS EXPLOSIONS

$$p_d = \max\{3 + p_v, 3 + 0.5 p_v + 0.04 / (A_v / V)^2\}$$

p_d = equivalent static pressure [kN/m²] *A_v* = area of venting components [m²] *V* = volume of room [m³]
load duration = 0.2 s *dp*10-1000 kpa
reaction zone *b*

Figure 1: Pressure waves inside the explosion medium: (a) deflagration, (b) detonation

UK statistics

	Annual probability of occurrence in dwellings	Possible pressure
Reported explosion but not significant	0.064 x 10 ⁻⁴	<<17 kN/m²
Moderate explosion	0.010 x 10 ⁻⁴	<17 kN/m²
Severe explosion	0.005 x 10 ⁻⁴	>17 kN/m²
Very severe explosion	0.0002 x 10 ⁻⁴	>>17 kN/m ²

Observed scatter in explosions

Human error model

- Probability of making an error P(H)
- Magnitude of the error
- Effect on R: Δ , e.g. zero mean, normal, sd $\sigma(\Delta)$

P(F) = [1-P(H)] P(F|no error) + P(H) P(F | error)

where $P(F | error) = P(Z_e < 0) = P(R + \Delta - S < 0)$

Human error model

Figure 1: possible model for the effect of human error on resistance.

Data / Numerical values

Aspects

✓ Professional skill

Complexity of the task, completeness or contradiction of information

Physical and mental conditions, including stress and time pressure

- Adaptation of technology to human beings
- Social factors and organisation

In some handbooks [e.g. Gutman and Swain, 1983] general estimates for the probability of making errors are given.

Gutman/Swain

- Class 5 unbelievable
- Class 4 regular simple task, minimal stress
- Class 3 regular but more complex task, , some clues, less time
- Class 2 cues and memory necessary, distraction, little feed back
- Class 1 unfamiliar, complex, stress, no time

• P(error) ~ 10 - class

Probability depends on training and mental circumstances (e.g.stress).

Prague, May 2011 - COST Action TU0601 - Robustness of Structures

Quantification

QA: Design checking

Checking Efficiency versus Error Magnitude at t = 20 minutes.

Conclusions

Hazards are reviewed

•Focus on modelling and probabilistic description of explosion events

•Statistical modelling of human errors also discussed

